Search results for "Radial distribution function"
showing 10 items of 26 documents
Monte Carlo simulation of many-arm star polymers in two-dimensional good solvents in the bulk and at a surface
1991
A Monte Carlo technique is proposed for the simulation of statistical properties of many-arm star polymers on lattices. In this vectorizing algorithm, the length of each arml is increased by one, step by step, from a starting configuration withl=1 orl=2 which is generated directly. This procedure is carried out for a large sample (e.g., 100,000 configurations). As an application, we have studied self-avoiding stars on the square lattice with arm lengths up tol max=125 and up tof=20 arms, both in the bulk and in the geometry where the center of the star is adsorbed on a repulsive surface. The total number of configurations, which behaves asN∼l γ G–1μ fl , whereμ=2.6386 is the usual effective…
A generalized Newton iteration for computing the solution of the inverse Henderson problem
2020
We develop a generalized Newton scheme IHNC for the construction of effective pair potentials for systems of interacting point-like particles.The construction is made in such a way that the distribution of the particles matches a given radial distribution function. The IHNC iteration uses the hypernetted-chain integral equation for an approximate evaluation of the inverse of the Jacobian of the forward operator. In contrast to the full Newton method realized in the Inverse Monte Carlo (IMC) scheme, the IHNC algorithm requires only a single molecular dynamics computation of the radial distribution function per iteration step, and no further expensive cross-correlations. Numerical experiments…
On quantum effects near the liquid-vapor transition in helium
2001
The liquid-vapor transition in He-3 and He-4 is investigated by means of path-integral molecular dynamics and the quantum virial expansion. Both methods are applied to the critical isobar and the critical isochore. While previous path-integral simulations have mainly considered the lambda transition and superfluid regime in He-4, we focus on the vicinity of the critical point and obtain good agreement with experimental results for the molar volume and the internal energy down to subcritical temperatures. We find that an effective classical potential that properly describes the two-particle radial distribution function exhibits a strong temperature dependence near the critical temperature. T…
Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy
2018
AIF acknowledge support by the US Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02 03ER15476. AIF acknowledges support by the Laboratory Directed Research and Development Program through LDRD 18-047 of Brookhaven National Laboratory under U.S. Department of Energy Contract No. DE-SC0012704 for initiating his research in machine learning methods. The help of the beamline staff at ELETTRA (project 20160412) synchrotron radiation facility is acknowledged. RMC-EXAFS and MD-EXAFS simulations were performed on the LASC cluster-type computer at Institute of Solid State Physics of the University of Latvia.
Evidence of nickel ions dimerization in NiWO4 and NiWO4-ZnWO4 solid solutions probed by EXAFS spectroscopy and reverse Monte Carlo simulations
2021
Abstract The existence of exchange-coupled Ni 2 + ions – the so-called magnetic dimers – in wolframite-type NiWO 4 and Zn c Ni 1 − c WO 4 solid solutions with high nickel content was discovered by X-ray absorption spectroscopy combined with reverse Monte Carlo (RMC) simulations. Temperature- (10–300 K) and composition-dependent X-ray absorption spectra were measured at the Ni K-edge, Zn K-edge, and W L 3 -edge of microcrystalline NiWO 4 , Zn c Ni 1 − c WO 4 and ZnWO 4 . Structural models were obtained from simultaneous analysis of the extended X-ray absorption fine structure (EXAFS) spectra at three metal absorption edges using RMC simulations. The obtained radial distribution functions for…
Ordering effects in extreme high-resolution depth profiling with MeV ion beams
2012
Abstract The continuing development of depth profiling with MeV ion beam methods with depth resolutions in the nanometre, and even sub-nanometre, regime implies the resolved depth become comparable with the interatomic spacing. To investigate how short-range ordering influences depth profiles at these resolutions, we have employed a mathematical modelling approach. The radial, g ( r ) and depth distribution, g ( z ) functions were calculated for (1 0 0) surface, random and amorphous Si structures at 300 K produced using molecular dynamics simulations with the EDIP quasi-empirical potential. The results showed that short-range ordering lead to reduction of the scattering yield below the deep…
EDA: EXAFS data-analysis software package
2021
The EXAFS data-analysis software package EDA consists of a suite of programs running under a Windows operating system environment that is designed to perform all steps of conventional EXAFS data analysis such as extraction of the XANES/EXAFS parts of the X-ray absorption coefficient, Fourier filtering and EXAFS fitting using the Gaussian and cumulant models. The package also includes two advanced approaches which allow the reconstruction of the radial distribution function (RDF) from EXAFS based on the regularization-like method and the calculation of configuration-averaged EXAFS using a set of atomic configurations obtained from molecular-dynamics or Monte Carlo simulations.---- / / / ----…
Optimal calculation of the pair correlation function for an orthorhombic system
2012
We present a new computational method to calculate arbitrary pair correlation functions of an orthorombic system in the most efficient way. The algorithm is demonstrated by the calculation of the radial distribution function of shock compressed liquid hydrogen.
Heterogeneity at the glass transition: a review
1999
Theoretical concepts and experimental evidence of heterogeneity in glass-forming liquids and polymers are reviewed. The main purpose is to provide an introduction to theoretical developments and recent experiments which have led to rapidly increasing knowledge. Realizing that there is no consensus in regard to the various scenarios of the glass transition starting from rather different assumptions we try to give a balanced overview although we also compare and interrelate some of the approaches. The experimental part describes recent nuclear magnetic resonance, dielectric, and optical experiments from which dynamically distinguishable subensembles can be selected thus proving the existence …
Structure and Dynamics of NaCl in Methanol. A Molecular Dynamics Study
1991
Abstract A recently developed flexible three-site model for methanol was employed to perform a Molecular Dynamics simulation of a 0.6 molal NaCl solution. The ion-methanol and ion-ion potential functions were derived from ab initio calculations. The structural properties of the solution are discussed on the basis of radial and angular distribution functions, the orientation of the methanol molecules, and their geometrical arrangement in the solvation shells of the ions. The dynamical properties of the solution - like self-diffusion coefficients, hindered translations, librations, and internal vibrations of the methanol molecules - are calculated from various autocorrelation functions.